Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Lymphedema is localized swelling due to lymphatic system dysfunction, often affecting arms and legs due to fluid accumulation. It occurs in 20% to 94% of patients within 2–5 years after breast cancer treatment, with around 20% of women developing breast cancer-related lymphedema. This condition involves the accumulation of protein-rich fluid in interstitial spaces, leading to symptoms like swelling, pain, and reduced mobility that significantly impact quality of life. The early diagnosis of lymphedema helps mitigate the risk of deterioration and prevent its progression to more severe stages. Healthcare providers can reduce risks through exercise prescriptions and self-manual lymphatic drainage techniques. Lymphedema diagnosis currently relies on physical examinations and limb volume measurements, but challenges arise from a lack of standardized criteria and difficulties in detecting early stages. Recent advancements in computational imaging and decision support systems have improved diagnostic accuracy through enhanced image reconstruction and real-time data analysis. The aim of this comprehensive review is to provide an in-depth overview of the research landscape in computational diagnostic techniques for lymphedema. The computational techniques primarily include imaging-based, electrical, and machine learning (ML) approaches, which utilize advanced algorithms and data analysis. These modalities were compared based on various parameters to choose the most suitable techniques for their applications. Lymphedema detection faces challenges like subtle symptoms and inconsistent diagnostics. The research identifies bioimpedance spectroscopy (BIS), Kinect sensor and ML integration as the promising modalities for early lymphedema detection. BIS can effectively identify lymphedema as early as four months post-surgery with sensitivity of 44.1% and specificity of 95.4% in diagnosing lymphedema whereas ML and artificial neural network achieved an impressive average cross-validation accuracy of 93.75%, with sensitivity at 95.65% and specificity at 91.03%. ML and imaging can be integrated into clinical practice to enhance diagnostic accuracy and accessibility.more » « lessFree, publicly-accessible full text available February 13, 2026
-
Free, publicly-accessible full text available February 3, 2026
-
As big data becomes an important part of business analytics for gaining insights about business practices, the quality of big data is an essential factor impacting the outcomes of business analytics. Although this is quite challenging, conceptual modelling has much potential to solve it since the good quality of data comes from good quality of models. However, existing data models at a conceptual level have limitations to incorporate quality aspects into big data models. In this paper, we focus on the challenges cause by Variety of big data propose IRIS, a conceptual modelling framework for big data models which enables us to define three modelling quality notions – relevance, comprehensiveness, and relative priorities and incorporate such qualities into a big data model in a goal-oriented approach. Explored big data models based on the qualities are integrated with existing data grounded on three conventional organizational dimensions creating a virtual big data model. An empirical study has been conducted using the shipping decision process of a worldwide retail chain, to gain an initial understanding of the applicability of this approach.more » « less
An official website of the United States government
